metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(1,2,3,4-Tetrahydroisoquinoline-2-carbodithioato- $\kappa^2 S,S'$)(thiocyanato- κN)(triphenylphosphane)nickel(II)

P. Valarmathi,^a S. Thirumaran^a and S. Selvanayagam^{b*}

^aDepartment of Chemistry, Annamalai University, Annamalainagar 608 002, India, and ^bDepartment of Physics, Kalasalingam University, Krishnankoil 626 126, India Correspondence e-mail: s_selvanayagam@rediffmail.com

Received 22 November 2011; accepted 24 November 2011

Key indicators: single-crystal X-ray study; T = 292 K; mean σ (C–C) = 0.005 Å; R factor = 0.042; wR factor = 0.123; data-to-parameter ratio = 22.4.

The Ni^{II} atom in the mononuclear title compound, [Ni($C_{10}H_{10}NS_2$)(NCS)($C_{18}H_{15}P$)], exists within a S₂PN donor set that defines a distorted square-planar geometry. A significant asymmetry in the Ni–S bond lengths support the less effective *trans* effect of SCN⁻ over PPh₃.

Related literature

For general background to dithiocarbamates and their biological activity, see: Gunay *et al.* (1999); Hogarth (2005); Ozkirimli *et al.* (2005). Nickel complexes of phosphine ligands have been studied for their anticancer activity, see: Jarret *et al.* (1993). Nickel(II) dithiocarbamates can react with Lewis bases such as phosphines as well as hard bases such as nitrogenous ligands, see: Srinivasan *et al.* (2009); Travnicek *et al.* (2008). For the preparation of the title compound, see: Valarmathi *et al.* (2011).

a = 13.7981 (4) Å

b = 13.1429 (4) Å

c = 14.9447 (4) Å

Experimental

Crystal data	
$[Ni(C_{10}H_{10}NS_2)(NCS)(C_{18}H_{15}P)]$ M ₂ = 587 37	
Monoclinic, $P2_1/n$	

$\beta = 91.693 \ (2)^{\circ}$
$V = 2708.99 (13) \text{ Å}^3$
Z = 4
Mo $K\alpha$ radiation

.

Data collection

Bruker Kappa APEXII CCD
diffractometer
Absorption correction: multi-scan
(SADABS; Bruker 1999)
$T_{\min} = 0.783, T_{\max} = 0.861$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.042$ 325 parameters $wR(F^2) = 0.123$ H-atom parameters constrainedS = 1.03 $\Delta \rho_{max} = 0.55$ e Å $^{-3}$ 7287 reflections $\Delta \rho_{min} = -0.30$ e Å $^{-3}$

Table 1	
Selected	bond lengths (Å).

N1—Ni1	1.867 (2)	S1-Ni1	2.218 (1)
P1—Ni1	2.1874 (6)	S2-Ni1	2.162 (1)

 $\mu = 1.03 \text{ mm}^{-1}$ T = 292 K

 $R_{\rm int} = 0.035$

 $0.25 \times 0.20 \times 0.15~\text{mm}$

33862 measured reflections

7287 independent reflections

5132 reflections with $I > 2\sigma(I)$

Data collection: *APEX2* (Bruker, 2004); cell refinement: *SAINT* (Bruker, 2004); data reduction: *SAINT* and *XPREP* (Bruker, 2004); program(s) used to solve structure: *SIR92* (Altomare *et al.*, 1993); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997) and *PLATON* (Spek, 2009); software used to prepare material for publication: *SHELXL97* and *PLATON*.

ST thanks the SAIF, Indian Institute of Technolgy, Chennai, for the data collection.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5724).

References

- Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.
- Bruker (1999). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Gunay, N. S., Capan, G., Ulusay, N., Ergenc, N., Otuk, G. & Kay, D. (1999). Farmaco, 54, 826-831.
- Hogarth, G. (2005). Prog. Inorg. Chem. 53, 71-561.
- Jarret, P. S., Dhubhghaill, O. M. N. & Salder, P. J. (1993). J. Chem. Soc. Dalton Trans. pp. 1863–1870.
- Ozkirimli, A., Apak, T. I., Kiraz, M. & Yengenoglu, Y. (2005). Arch. Pharmacol. Res. 28, 1213–1218.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

- Srinivasan, N., Sathyaselvabala, V., Kuppulekshmy, K., Valarmathi, P. & Thirumaran, S. (2009). Monatsh. Chem. 140, 1431–1436.
- Travnicek, Z., Pastorek, R. & Slovak, V. (2008). Polyhedron, 27, 411-419.
- Valarmathi, P., Srinivasan, N. & Thirumaran, S. (2011). J. Sulfur Chem. 32, 583– 591.

Acta Cryst. (2011). E67, m1882 [doi:10.1107/S1600536811050550]

(1,2,3,4-Tetrahydroisoquinoline-2-carbodithioato- $\kappa^2 S,S'$)(thiocyanato- κN)(triphenylphosphane)nickel(II)

P. Valarmathi, S. Thirumaran and S. Selvanayagam

Comment

Dithiocarbamates are versatile ligands which have been shown to bind to all transition elements supporting a wide range of oxidation state (Hogarth, 2005). They have been shown to posses a broad spectrum of biological activities such as fungicidal (Ozkirimli *et al.*, 2005) and bactericidal (Gunay *et al.*, 1999). Nickel complexes of phosphine ligands have been studied for their anticancer activity (Jarret *et al.*, 1993). Nickel(II) dithiocarbamates are borderline acceptors and they can react with Lewis bases such as phosphines as well as hard bases such as nitrogenous ligands (Srinivasan *et al.*, 2009; Travnicek *et al.*, 2008). In view of these importance we have undertaken the crystal structure determination of the title compound, and the results are presented here.

The X-ray study confirmed the molecular structure and atomic connectivity for (I), as illustrated in Fig. 1.

The structure consists of distorted square planar metal coordination with NiS₂PN chromophore. Deviation of the plane from a perfect square is caused by the small bite angle subtended by the sulfur atoms of the chelating dithiocarbamate at the nickel atom. The Ni—S bond distances [2.218 (1) and 2.162 (1) Å, respectively] are significantly different, due to the different trans influences exerted by phosphine and NCS⁻. PPh₃ being a good π -acceptor has a greater trans influence and hence the Ni—S bond trans to P is longer than the one trans to NCS anion.

The shortening of Ni—P distance is due the strong back bonding in nickel atom. The C—P—C angles deviate appreciably from the normal tetrahedral angle due to the crowding of the phenyl rings. The short Ni—N distance, 1.867 (2) Å, shows the effective bonding between the nickel atom and NCS⁻. The Ni—N—C angle 170.9 (2)° indicates deviation from the linearity and is due to steric compulsions of the bulky PPh₃ group.

The C—S bond lengths are 1.707 (3) and 1.717 (3) Å which are shorter than the typical single bond value of 1.81 Å and longer than C=S distance of 1.69 Å, indicating partial double bond character. The short thioureide C—N distance, 1.315 (3) Å indicates that the π -electron density is delocalised over the S₂CN moiety and that this bond has partial double bond character.

In addition to the van der Waals interactions, the molecular structure is influenced only by intramolecular C—H···S hydrogen bonds involving sulphur atoms S1 and S2. (Fig. 2 and Table 1).

Experimental

Compound (I) was prepared according to the literature procedure (Valarmathi *et al.*, 2011). Single crystals of (I) were obtained by slow evaporation of dichloromethane and ethanol (2:1) solution of (I) at room temperature.

Refinement

H atoms were placed in idealized positions and allowed to ride on their parent atoms, with C—H distances of 0.93-0.97 Å, and $Uiso(H) = 1.2U_{eq}(C)$ for H atoms.

Figures

Fig. 1. The molecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level

Fig. 2. Molecular packing of the title compound, viewed along the b axis; H-bonds are shown as dashed lines. For the sake of clarity, H atoms, not involved in hydrogen bonds, have been omitted

(1,2,3,4-Tetrahydroisoquinoline-2-carbodithioato- $\kappa^2 S, S'$)(thiocyanato- κN)(triphenylphosphane)nickel(II)

Crystal a	lata
-----------	------

[Ni(C ₁₀ H ₁₀ NS ₂)(NCS)(C ₁₈ H ₁₅ P)]	F(000) = 1216
$M_r = 587.37$	$D_{\rm x} = 1.440 {\rm ~Mg~m}^{-3}$
Monoclinic, $P2_1/n$	Mo K α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2yn	Cell parameters from 8723 reflections
a = 13.7981 (4) Å	$\theta = 2.5 - 26.3^{\circ}$
b = 13.1429 (4) Å	$\mu = 1.03 \text{ mm}^{-1}$
c = 14.9447 (4) Å	T = 292 K
$\beta = 91.693 \ (2)^{\circ}$	Block, pale-yellow
$V = 2708.99 (13) \text{ Å}^3$	$0.25\times0.20\times0.15~mm$
Z = 4	

Data collection

Bruker KAPPA APEXII CCD diffractometer	7287 independent reflections
Radiation source: fine-focus sealed tube	5132 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.035$
ω and ϕ scan	$\theta_{\text{max}} = 29.2^{\circ}, \ \theta_{\text{min}} = 2.0^{\circ}$
Absorption correction: multi-scan (<i>SADABS</i> ; Bruker 1999)	$h = -18 \rightarrow 17$
$T_{\min} = 0.783, T_{\max} = 0.861$	$k = -11 \rightarrow 17$
33862 measured reflections	$l = -20 \rightarrow 20$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.042$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.123$	H-atom parameters constrained
<i>S</i> = 1.03	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0574P)^{2} + 1.2033P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
7287 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
325 parameters	$\Delta \rho_{max} = 0.55 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{min} = -0.30 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \text{sigma}(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C1	0.67037 (18)	0.52602 (19)	0.77990 (18)	0.0474 (6)
C2	0.70333 (19)	0.61484 (19)	0.43746 (18)	0.0486 (6)
C3	0.5892 (3)	0.5795 (3)	0.3133 (2)	0.0739 (9)
H3A	0.5591	0.6295	0.2737	0.089*
H3B	0.5448	0.5654	0.3609	0.089*
C4	0.6072 (3)	0.4837 (3)	0.2622 (3)	0.0850 (11)
H4A	0.6227	0.4289	0.3036	0.102*
H4B	0.5490	0.4650	0.2280	0.102*
C5	0.6874 (2)	0.4983 (3)	0.2015 (2)	0.0694 (9)
C6	0.6980 (4)	0.4273 (3)	0.1283 (3)	0.0919 (12)
H6	0.6541	0.3740	0.1207	0.110*
C7	0.7711 (4)	0.4377 (4)	0.0712 (3)	0.0969 (13)
H7	0.7773	0.3920	0.0242	0.116*
C8	0.8378 (3)	0.5175 (4)	0.0825 (3)	0.0950 (13)
H8	0.8875	0.5249	0.0424	0.114*
C9	0.8305 (3)	0.5845 (3)	0.1519 (2)	0.0777 (10)
Н9	0.8755	0.6365	0.1602	0.093*
C10	0.7549 (2)	0.5731 (2)	0.20951 (19)	0.0592 (7)

C11	0.7468 (3)	0.6536 (3)	0.2850 (2)	0.0742 (9)
H11A	0.8102	0.6644	0.3131	0.089*
H11B	0.7250	0.7176	0.2593	0.089*
C12	1.00159 (18)	0.65116 (18)	0.63240 (16)	0.0424 (5)
C13	0.9915 (2)	0.7503 (2)	0.60153 (18)	0.0518 (6)
H13	0.9327	0.7838	0.6071	0.062*
C14	1.0679 (2)	0.7995 (2)	0.5627 (2)	0.0631 (8)
H14	1.0608	0.8663	0.5430	0.076*
C15	1.1541 (2)	0.7499 (3)	0.5532 (2)	0.0698 (9)
H15	1.2054	0.7827	0.5263	0.084*
C16	1.1653 (2)	0.6520 (3)	0.5833 (2)	0.0707 (9)
H16	1.2240	0.6185	0.5765	0.085*
C17	1.0890 (2)	0.6025 (2)	0.6240 (2)	0.0580 (7)
H17	1.0972	0.5366	0.6455	0.070*
C18	0.92192 (16)	0.46836 (17)	0.71702 (16)	0.0401 (5)
C19	0.9523 (2)	0.3997 (2)	0.65279 (19)	0.0526 (6)
H19	0.9652	0.4223	0.5954	0.063*
C20	0.9633 (2)	0.2978 (2)	0.6743 (2)	0.0663 (8)
H20	0.9850	0.2525	0.6315	0.080*
C21	0.9426 (2)	0.2629 (2)	0.7583 (2)	0.0632 (8)
H21	0.9508	0.1945	0.7725	0.076*
C22	0.9100 (2)	0.3294 (2)	0.8207 (2)	0.0587 (7)
H22	0.8946	0.3056	0.8771	0.070*
C23	0.89970 (19)	0.4318 (2)	0.80110 (18)	0.0492 (6)
H23	0.8778	0.4762	0.8445	0.059*
C24	0.89695 (17)	0.67053 (17)	0.79026 (15)	0.0404 (5)
C25	0.9742 (2)	0.6615 (2)	0.85052 (18)	0.0534 (6)
H25	1.0243	0.6165	0.8390	0.064*
C26	0.9775 (2)	0.7188 (2)	0.9275 (2)	0.0671 (8)
H26	1.0290	0.7114	0.9685	0.080*
C27	0.9048 (3)	0.7866 (2)	0.9437 (2)	0.0658 (8)
H27	0.9073	0.8254	0.9958	0.079*
C28	0.8290 (2)	0.7977 (2)	0.8845 (2)	0.0619 (7)
H28	0.7803	0.8445	0.8958	0.074*
C29	0.82414 (19)	0.7394 (2)	0.80687 (18)	0.0503 (6)
H29	0.7721	0.7468	0.7664	0.060*
N1	0.69817 (16)	0.54668 (18)	0.71207 (15)	0.0518 (5)
N2	0.67965 (18)	0.6210(2)	0.35176 (15)	0.0612 (6)
P1	0.89629 (4)	0.59881 (4)	0.68659 (4)	0.03763 (14)
S1	0.63111 (5)	0.56870 (6)	0.51886 (5)	0.05756 (19)
S2	0.81349 (5)	0.64882 (6)	0.48486 (4)	0.05379 (18)
S3	0.63080 (8)	0.50024 (8)	0.87781 (6)	0.0838 (3)
Ni1	0.75893 (2)	0.59313 (2)	0.60984 (2)	0.04025 (10)
	. /	. /	. /	. /

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0428 (14)	0.0467 (13)	0.0524 (16)	-0.0003 (10)	-0.0034 (11)	0.0053 (11)

C2	0.0488 (15)	0.0510 (14)	0.0455 (14)	0.0054 (11)	-0.0073 (11)	0.0023 (11)
C3	0.068 (2)	0.098 (3)	0.0535 (18)	0.0035 (17)	-0.0239 (16)	-0.0040 (16)
C4	0.069 (2)	0.098 (3)	0.086 (3)	-0.0164 (19)	-0.0205 (19)	-0.003 (2)
C5	0.067 (2)	0.078 (2)	0.0623 (19)	-0.0082 (16)	-0.0242 (16)	0.0088 (16)
C6	0.109 (3)	0.081 (2)	0.084 (3)	0.013 (2)	-0.023 (2)	-0.011 (2)
C7	0.106 (3)	0.111 (3)	0.072 (3)	0.034 (3)	-0.020 (2)	-0.023 (2)
C8	0.091 (3)	0.121 (3)	0.073 (2)	0.033 (3)	-0.014 (2)	-0.006 (2)
C9	0.070 (2)	0.100 (3)	0.063 (2)	0.0029 (18)	-0.0101 (17)	0.0145 (18)
C10	0.0552 (17)	0.0711 (18)	0.0505 (16)	0.0061 (13)	-0.0122 (13)	0.0131 (13)
C11	0.087 (2)	0.088 (2)	0.0470 (17)	-0.0120 (18)	-0.0133 (16)	0.0092 (15)
C12	0.0427 (13)	0.0472 (13)	0.0371 (12)	-0.0033 (10)	-0.0012 (10)	-0.0015 (10)
C13	0.0558 (16)	0.0490 (14)	0.0506 (15)	-0.0033 (12)	0.0039 (12)	0.0004 (11)
C14	0.083 (2)	0.0525 (15)	0.0543 (17)	-0.0181 (15)	0.0068 (15)	-0.0016 (13)
C15	0.067 (2)	0.082 (2)	0.0611 (19)	-0.0297 (17)	0.0171 (15)	-0.0127 (16)
C16	0.0481 (17)	0.083 (2)	0.081 (2)	-0.0028 (15)	0.0127 (15)	-0.0028 (18)
C17	0.0484 (16)	0.0613 (16)	0.0645 (18)	0.0008 (12)	0.0058 (13)	0.0031 (13)
C18	0.0359 (12)	0.0424 (12)	0.0416 (12)	0.0001 (9)	-0.0062 (9)	-0.0004 (10)
C19	0.0547 (16)	0.0523 (15)	0.0507 (15)	0.0004 (12)	-0.0032 (12)	-0.0057 (12)
C20	0.0629 (19)	0.0477 (15)	0.088 (2)	0.0046 (13)	-0.0062 (16)	-0.0211 (15)
C21	0.0542 (17)	0.0381 (13)	0.096 (2)	-0.0036 (11)	-0.0123 (16)	0.0037 (15)
C22	0.0560 (17)	0.0531 (15)	0.0664 (18)	-0.0091 (12)	-0.0106 (14)	0.0164 (14)
C23	0.0524 (15)	0.0490 (13)	0.0458 (14)	-0.0008 (11)	-0.0034 (11)	0.0031 (11)
C24	0.0448 (13)	0.0396 (11)	0.0369 (12)	0.0000 (9)	0.0003 (10)	0.0002 (9)
C25	0.0569 (16)	0.0524 (14)	0.0499 (15)	0.0060 (12)	-0.0120 (12)	-0.0062 (12)
C26	0.079 (2)	0.0700 (19)	0.0515 (17)	-0.0049 (16)	-0.0184 (15)	-0.0068 (14)
C27	0.089 (2)	0.0596 (17)	0.0493 (16)	-0.0127 (16)	0.0071 (16)	-0.0168 (14)
C28	0.0659 (19)	0.0561 (16)	0.0646 (18)	0.0009 (13)	0.0178 (15)	-0.0133 (14)
C29	0.0476 (15)	0.0514 (14)	0.0519 (15)	0.0038 (11)	0.0013 (12)	-0.0030 (11)
N1	0.0451 (12)	0.0603 (13)	0.0498 (13)	0.0018 (10)	-0.0036 (10)	0.0028 (11)
N2	0.0602 (15)	0.0798 (16)	0.0428 (13)	0.0006 (12)	-0.0109 (11)	0.0018 (11)
P1	0.0381 (3)	0.0410 (3)	0.0336 (3)	0.0027 (2)	-0.0021 (2)	0.0014 (2)
S1	0.0445 (4)	0.0752 (5)	0.0522 (4)	-0.0037 (3)	-0.0108 (3)	0.0107 (3)
S2	0.0529 (4)	0.0690 (4)	0.0390 (3)	-0.0097 (3)	-0.0059 (3)	0.0059 (3)
S3	0.1015 (7)	0.0936 (7)	0.0572 (5)	-0.0079 (5)	0.0185 (5)	0.0166 (4)
Ni1	0.03948 (18)	0.04412 (17)	0.03685 (17)	0.00331 (12)	-0.00393 (12)	0.00315 (12)
Geometric	narameters (Å °)					
5.00000000	eometric purumeters (A,)					

C1—N1	1.128 (3)	C15—C16	1.370 (5)
C1—S3	1.613 (3)	C15—H15	0.9300
C2—N2	1.315 (3)	C16—C17	1.392 (4)
C2—S1	1.707 (3)	C16—H16	0.9300
C2—S2	1.717 (3)	С17—Н17	0.9300
C3—N2	1.464 (4)	C18—C23	1.388 (3)
C3—C4	1.497 (5)	C18—C19	1.391 (3)
С3—НЗА	0.9700	C18—P1	1.806 (2)
С3—Н3В	0.9700	C19—C20	1.385 (4)
C4—C5	1.464 (5)	С19—Н19	0.9300
C4—H4A	0.9700	C20—C21	1.374 (5)

C4—H4B	0.9700	C20—H20	0.9300
C5—C10	1.357 (4)	C21—C22	1.364 (4)
C5—C6	1.449 (5)	C21—H21	0.9300
C6—C7	1.347 (6)	C22—C23	1.383 (4)
С6—Н6	0.9300	C22—H22	0.9300
С7—С8	1.402 (6)	С23—Н23	0.9300
С7—Н7	0.9300	C24—C25	1.380 (3)
C8—C9	1.366 (5)	C24—C29	1.381 (3)
C8—H8	0.9300	C24—P1	1.813 (2)
C9—C10	1.380 (5)	C25—C26	1.375 (4)
С9—Н9	0.9300	С25—Н25	0.9300
C10—C11	1.553 (5)	C26—C27	1.368 (5)
C11—N2	1.447 (4)	С26—Н26	0.9300
C11—H11A	0.9700	C27—C28	1.358 (4)
C11—H11B	0.9700	С27—Н27	0.9300
C12—C17	1.374 (4)	C28—C29	1.390 (4)
C12—C13	1.387 (4)	C28—H28	0.9300
C12—P1	1.819 (2)	С29—Н29	0.9300
C13—C14	1.380 (4)	N1—Ni1	1.867 (2)
С13—Н13	0.9300	P1—Ni1	2.1874 (6)
C14—C15	1.367 (5)	S1—Ni1	2.218 (1)
C14—H14	0.9300	S2—Ni1	2.162 (1)
N1—C1—S3	178.2 (3)	С12—С17—Н17	120.0
N2-C2-S1	125.6 (2)	С16—С17—Н17	120.0
N2—C2—S2	125.3 (2)	C23—C18—C19	118.6 (2)
S1—C2—S2	109.07 (14)	C23—C18—P1	120.66 (19)
N2—C3—C4	111.2 (3)	C19—C18—P1	120.16 (19)
N2—C3—H3A	109.4	C20—C19—C18	120.0 (3)
С4—С3—НЗА	109.4	С20—С19—Н19	120.0
N2—C3—H3B	109.4	С18—С19—Н19	120.0
С4—С3—Н3В	109.4	C21—C20—C19	120.7 (3)
НЗА—СЗ—НЗВ	108.0	C21—C20—H20	119.6
C5—C4—C3	110.2 (3)	C19—C20—H20	119.6
С5—С4—Н4А	109.6	C22—C21—C20	119.5 (3)
C3—C4—H4A	109.6	C22—C21—H21	120.3
C5—C4—H4B	109.6	C20—C21—H21	120.3
C3—C4—H4B	109.6	C21—C22—C23	120.9 (3)
H4A—C4—H4B	108.1	C21—C22—H22	119.6
C10—C5—C6	116.6 (4)	C23—C22—H22	119.6
C10—C5—C4	124.8 (3)	C22—C23—C18	120.3 (3)
C6—C5—C4	118.6 (3)	C22—C23—H23	119.9
C7—C6—C5	120.5 (4)	C18—C23—H23	119.9
С7—С6—Н6	119.8	C25—C24—C29	119.4 (2)
С5—С6—Н6	119.8	C25—C24—P1	119.81 (19)
C6—C7—C8	120.0 (4)	C29—C24—P1	120.62 (19)
С6—С7—Н7	120.0	C26—C25—C24	120.3 (3)
С8—С7—Н7	120.0	C26—C25—H25	119.8
C9—C8—C7	120.7 (4)	C24—C25—H25	119.8
C9_C8_H8	119.6	C27—C26—C25	119.9 (3)

С7—С8—Н8	119.6	С27—С26—Н26	120.0
C8—C9—C10	118.5 (4)	C25—C26—H26	120.0
С8—С9—Н9	120.8	C28—C27—C26	120.6 (3)
С10—С9—Н9	120.8	C28—C27—H27	119.7
C5—C10—C9	123.6 (3)	С26—С27—Н27	119.7
C5-C10-C11	119.6 (3)	C27—C28—C29	120.1 (3)
C9—C10—C11	116.8 (3)	C27—C28—H28	119.9
N2-C11-C10	111.1 (3)	С29—С28—Н28	119.9
N2-C11-H11A	109.4	C24—C29—C28	119.6 (3)
C10-C11-H11A	109.4	С24—С29—Н29	120.2
N2—C11—H11B	109.4	С28—С29—Н29	120.2
C10-C11-H11B	109.4	C1—N1—Ni1	170.9 (2)
H11A—C11—H11B	108.0	C2—N2—C11	123.0 (3)
C17—C12—C13	119.1 (2)	C2—N2—C3	122.9 (3)
C17—C12—P1	125.4 (2)	C11—N2—C3	113.3 (2)
C13—C12—P1	115.43 (19)	C18—P1—C24	106.40 (11)
C14—C13—C12	120.6 (3)	C18—P1—C12	108.54 (11)
С14—С13—Н13	119.7	C24—P1—C12	101.53 (11)
С12—С13—Н13	119.7	C18—P1—Ni1	105.06 (8)
C15—C14—C13	119.9 (3)	C24—P1—Ni1	116.63 (8)
C15-C14-H14	120.1	C12—P1—Ni1	118.07 (8)
C13—C14—H14	120.1	C2—S1—Ni1	85.13 (9)
C14—C15—C16	120.2 (3)	C2—S2—Ni1	86.67 (9)
C14—C15—H15	119.9	N1—Ni1—S2	173.69 (7)
С16—С15—Н15	119.9	N1—Ni1—P1	89.15 (7)
C15—C16—C17	120.2 (3)	S2—Ni1—P1	97.07 (3)
С15—С16—Н16	119.9	N1—Ni1—S1	94.94 (7)
С17—С16—Н16	119.9	S2—Ni1—S1	79.06 (3)
C12—C17—C16	120.0 (3)	P1—Ni1—S1	170.83 (3)
N2-C3-C4-C5	-48.3 (4)	C10-C11-N2-C2	125.0 (3)
C3—C4—C5—C10	19.4 (5)	C10-C11-N2-C3	-45.3 (4)
C3—C4—C5—C6	-162.1 (3)	C4—C3—N2—C2	-105.5 (4)
C10-C5-C6-C7	-1.1 (5)	C4—C3—N2—C11	64.7 (4)
C4—C5—C6—C7	-179.7 (4)	C23—C18—P1—C24	26.0 (2)
C5—C6—C7—C8	0.3 (6)	C19-C18-P1-C24	-162.5 (2)
C6—C7—C8—C9	0.9 (6)	C23-C18-P1-C12	134.6 (2)
C7—C8—C9—C10	-1.3 (5)	C19—C18—P1—C12	-53.9 (2)
C6—C5—C10—C9	0.7 (5)	C23—C18—P1—Ni1	-98.25 (19)
C4—C5—C10—C9	179.2 (3)	C19—C18—P1—Ni1	73.2 (2)
C6-C5-C10-C11	178.6 (3)	C25—C24—P1—C18	50.6 (2)
C4—C5—C10—C11	-2.9 (5)	C29—C24—P1—C18	-133.8 (2)
C8—C9—C10—C5	0.5 (5)	C25-C24-P1-C12	-62.8 (2)
C8—C9—C10—C11	-177.4 (3)	C29—C24—P1—C12	112.7 (2)
C5—C10—C11—N2	15.0 (4)	C25—C24—P1—Ni1	167.41 (18)
C9—C10—C11—N2	-167.0 (3)	C29—C24—P1—Ni1	-17.1 (2)
C17—C12—C13—C14	0.1 (4)	C17—C12—P1—C18	-5.7 (3)
P1-C12-C13-C14	177.2 (2)	C13—C12—P1—C18	177.39 (19)
C12—C13—C14—C15	1.0 (4)	C17—C12—P1—C24	106.1 (2)
C13-C14-C15-C16	-0.9 (5)	C13-C12-P1-C24	-70.8 (2)

C14-C15-C16-C17	-0.2 (5)	C17—C12—P1—Ni1	-125.0 (2)
C13-C12-C17-C16	-1.3 (4)	C13—C12—P1—Ni1	58.1 (2)
P1-C12-C17-C16	-178.1 (2)	N2—C2—S1—Ni1	176.0 (3)
C15-C16-C17-C12	1.4 (5)	S2—C2—S1—Ni1	-2.32 (12)
C23-C18-C19-C20	-2.4 (4)	N2—C2—S2—Ni1	-176.0 (2)
P1-C18-C19-C20	-174.1 (2)	S1—C2—S2—Ni1	2.37 (12)
C18-C19-C20-C21	1.4 (4)	C1—N1—Ni1—S2	-139.3 (12)
C19—C20—C21—C22	0.6 (4)	C1—N1—Ni1—P1	30.9 (14)
C20-C21-C22-C23	-1.5 (4)	C1—N1—Ni1—S1	-157.3 (14)
C21—C22—C23—C18	0.4 (4)	C2—S2—Ni1—N1	-20.1 (7)
C19—C18—C23—C22	1.6 (4)	C2—S2—Ni1—P1	169.83 (9)
P1-C18-C23-C22	173.2 (2)	C2—S2—Ni1—S1	-1.76 (9)
C29—C24—C25—C26	1.6 (4)	C18—P1—Ni1—N1	64.00 (11)
P1-C24-C25-C26	177.2 (2)	C24—P1—Ni1—N1	-53.51 (11)
C24—C25—C26—C27	-1.3 (5)	C12—P1—Ni1—N1	-174.89 (12)
C25—C26—C27—C28	0.2 (5)	C18—P1—Ni1—S2	-117.09 (9)
C26—C27—C28—C29	0.6 (5)	C24—P1—Ni1—S2	125.41 (9)
C25—C24—C29—C28	-0.8 (4)	C12—P1—Ni1—S2	4.03 (9)
P1-C24-C29-C28	-176.4 (2)	C18—P1—Ni1—S1	-52.7 (2)
C27—C28—C29—C24	-0.3 (4)	C24—P1—Ni1—S1	-170.20 (18)
S3—C1—N1—Ni1	46 (9)	C12—P1—Ni1—S1	68.4 (2)
S1—C2—N2—C11	-175.1 (2)	C2—S1—Ni1—N1	179.78 (11)
S2—C2—N2—C11	3.0 (4)	C2—S1—Ni1—S2	1.77 (9)
S1—C2—N2—C3	-5.8 (4)	C2—S1—Ni1—P1	-63.9 (2)
S2—C2—N2—C3	172.3 (2)		

Fig. 1

Fig. 2

